

Study of Neoclassical Transport of High Z impurities

College W&M Colorado Sch Mines

Columbia U **CompX**

General Atomics

INEL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

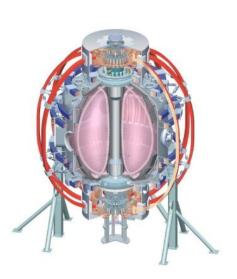
UCLA

UCSD

U Colorado

U Illinois

U Maryland

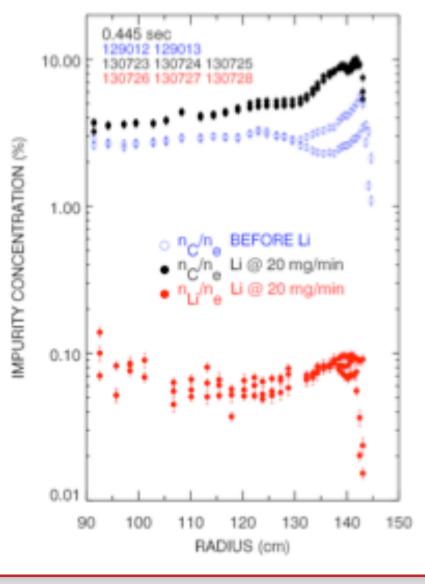

U Rochester

U Wisconsin

U Washington

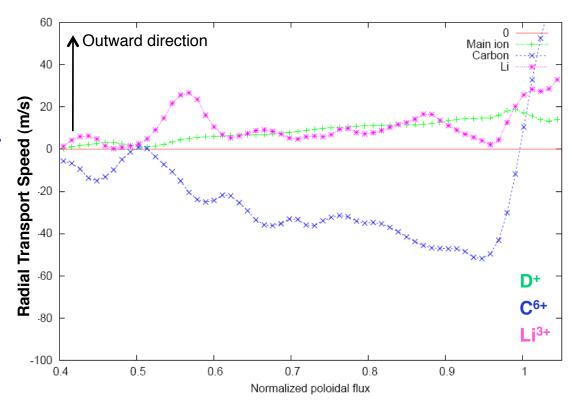
TK Gray, AG McLean and R Maingi **ORNL**

NSTX Research Forum Princeton, NJ December 1-3, 2009

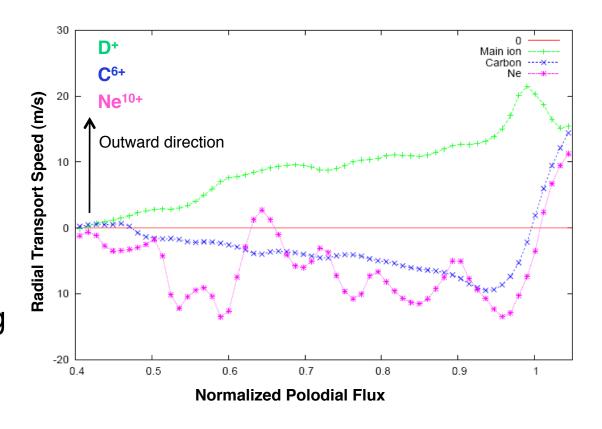


Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP. Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Understand the mechanism by which high Z impurities accumulate in NSTX discharges (R11-3)


- ELM-free NSTX lithium discharges show a large increase in impurity accumulation during the discharge
 - C, O and heavy metals (Fe)
- Multiple mechanisms by which impurities could be accumulating
- Predicted by XGC0 modeling of edge plasma
 - Neoclassical transport only
 - Anomalous transport is turned off
 - Preliminary results provided by CS
 Chang (publication forth coming)

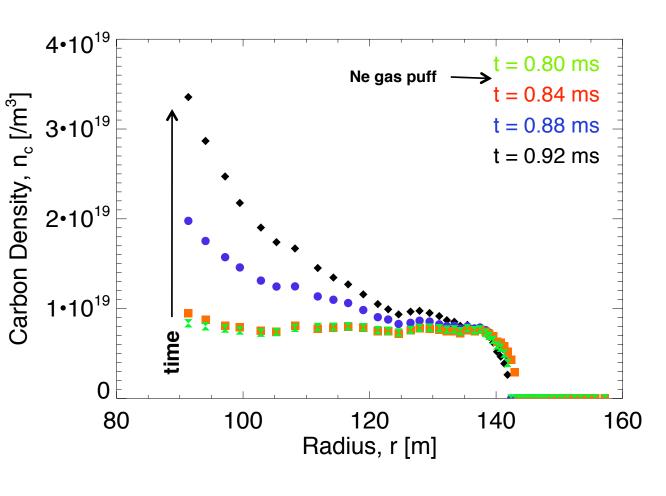
Proposed Transport Mechanism from XGC0


- Momentum exchange between heavy and light ions
 - Lighter species see the heavier impurities species as another pitchangle scattering source
 - Acts to enhancing the radial outward transport of light ion
 - For the heavier species, collisions with the lighter species result in drag force without much pitch-angle scattering
 - Due to momentum conservation, the heavier species move inward

The result is that lighter Li³⁺ ions act to "push" C⁶⁺ into the core

The Addition of Neon Impurity Ions Act to Retard the Radial Transport of C to the core

- Net result is a lower concentration of carbon in the core
 - At the cost of adding neon ions
- Goal is to understand the mechanism by which carbon is being transported inward



- This XP can be used to verify XGC0 simulations of impurity transport
 - Lead to a strategy to mitigate core impurities in the future

Preliminary Analysis of JHU Shots Doesn't Look Promising

- D'oH!
- Shot # 134095
 - Large neon puff@ ~ 0.8s
 - Varying amounts of lithium through out XP
- Increase in n_c
 seen directly after
 neon gas puff
 - Increased sputtering of graphite due to neon?

Propose dedicated XP to study Impurity transport

- Supports an integrated Modeling/Experimental Effort in understand impurity transport in NSTX
 - XGC0 model of neoclassical impurity transport
 - Better understanding of the mechanism of high Z accumulation in core plasmas
- Continue to analyze previous data
 - Continue collaboration with CS Chang and XGC folks to refine model
 - Piggyback on XPs this run campaign if anyone else uses high-Z gas puff injection
- Don't typically measure neon with available diagnostics
 - CHERS
 - Look for a reduction in n_C/n_e with gas puffing
 - While Z_{eff} increases or remains constant due to presence of neon
 - SWIFT for change in C ion velocities?

Back-up Slides for XGC0 Details

XGC0: Kinetic transport modeling code (Courtesy of CS Chang)

- Full-f Particle-in-cell in 3D magnetic field (RMP, ripple)
- Realistic geometry from geqdsk data (wall and separatrix included)
- 3D (in r-space) + 2D (in v-space) ion and electron Lagrangian dynamics with self-consistent
 1D E_r evolution
- Electrostatic potential Φ is assumed to be a flux function
- Logical sheath at diverter plates $(J_{\perp} + J_{\parallel} = 0)$ out of a flux tube
- D/H Neutral Monte Carlo particles with a wall recycling coefficient
- Conserving Monte-Carlo Coulomb and neutral collisions (ionization and charge exchange)
- DEGAS2 is built-in (Stotler)
- Multiple ion species with Hirshman collision operator
- Heat flux from core
- Implementation of anomalous transport modeling: random walk and convection.
 Independent control of the ambipolar particle and the heat transport on each species
- More self-consistent anomalous transport is to be imported from XGC1.
- XGC-RF contains rf operator
- XGC0 Reference: Park G Y, et al. J. Phys. Conf. Series 78, 012087 (2007)

Kinetic neoclassical impurity transport simulation

- Anomalous transport is off → Purely Neoclassical
- Simulation domain: ψ_N =0.4 to wall in realistic g_eqdsk geometry (g124439.00497)
- 5 species: D⁺¹, e⁻, D⁰, C⁺⁶, Li⁺³ or Ne⁺¹⁰
- C⁺⁶ and Li⁺³ or Ne⁺¹⁰ are born at fixed fraction to n_e.
- Large initial C⁺⁶ density (10% uniform) and small Li or Ne density (1/3% uniform)
- Initial temperatures are assume to be equal between species.
- Simple neutral-plasma atomic interactions (CX and Ionization)
- Self-consistent E_r - v_{\parallel} with the impurity and edge effects (wall, X-point, neutral, pedestal, etc)
- Radial transport speeds are calculated while the initial profiles are being evolved.

